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ABSTRACT

In a previous work we have introduced the concept of

a parameter-dependent connected component of gray-

scale images that takes into account both the gray val-

ues of the pixels and the di�erences of the gray values

of the neighboring pixels. This concept is a convenient

tool to analyze or understand images at a higher level

than the pixel level. In this paper, we describe an algo-

rithm for �nding the parameter-dependent components

for a given image. We discuss di�erent strategies used

in the algorithm and analyze their e�ects through the

experimental results. Since the proposed algorithm is

independent of the formation of the images, it can be

used for the analysis of many types of images. The

experimental results show that for some appropriate

values of the parameters, the objects of an image may

be represented by its parameter-dependent components

reasonably well. Thus, the proposed algorithm pro-

vides us with the posibility of analyzing images further

at the component level.

1. INTRODUCTION

The theory of digital connectivity was �rst studied by

Rosenfeld [1], and since then a number of subsequent

papers, e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10], have appeared.

Rosenfeld [9] gave a de�nition of connected components

in which the pixels of a connected component have the

same gray value. In a binary image, the objects are usu-

ally represented by either black pixels or white pixels

and a connected component may be de�ned as a maxi-

mal black (or white) area. In this case, the properties of

the connected components, such as connectedness, cor-

respond to the properties of the objects in the images.

In a multi-gray-value image, an object usually contains
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pixels which have di�erent gray values. If we limit each

connected component to have only one gray value, an

object might be \cut" into several pieces while each

piece belongs to a di�erent connected component. In

this case, the properties of connected components do

not necessarily correspond to the properties of the ob-

jects in the images. However, in practical situations, for

comprehensive image understanding we would like to

know the inter-relationship among the objects, rather

than among the \parts" of the objects. So, we feel that

it would not be convenient in practice to constrain each

connected component to have the same gray values. In-

stead, it may be more useful to relax this condition to

allow the pixels in the same an image corresponds to a

connected component.

Recently ([11]), we have introduced the concept of

(�; �)-components of gray images that takes into ac-

count both the gray values of the pixels and the dif-

ferences of the gray values of the neighboring pixels,

where �, � are two parameters. Each such component

may contain the pixels which have di�erent gray val-

ues. We have discussed [11] some properties of (�; �)-

components which may help us to analyze and under-

stand the structure of an image at a higher level. The

experimental results have shown that for some appro-

priate parameter values, an (�; �)-component may rep-

resent an object of an image reasonably well. So, the

properties of the (�; �)-components describe the prop-

erties of the corresponding objects of the image. In

this paper, we shall discuss an e�cient algorithm to

�nd the (�; �)-components for a given image and some

strategies used in the algorithm.

2. PRELIMINARIES

A gray image � is represented by a set of points (also

called pixels) each of which has a certain gray value

representing the intensity or brightness of the point.

We shall use �(p) to denote the gray value of the point

p. Although, theoretically, �(p) could be any number,
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we shall take it, for convenience, to be a non-negative

integer. The spectrum of the gray values of a set of

pixels C is de�ned to be maxC �minC , where minC ,

maxC denote the minimum and the maximum of the

gray values in C respectively. Two points in a gray

image � are called adjacent (or neighbors) if they share

either a vertex or an edge. Our treatment does not

depend on the grid system chosen to represent an image

and the way in which the points share vertices or edges.

Instead of considering whether the points are 4-, 6- or 8-

neighbors (see [9] or [12] for de�nitions), we shall simply

consider here only whether two points are adjacent or

not.

A path between two points p0 and pn in a gray im-

age � is a sequence of points p0; p1; : : : ; pn such that

pi 2 � and pi and pi�1 are adjacent for all 1 � i � n.

Given nonnegative integers � and �, we say that two

distinct points p, q 2 � are (�; �)-connected if there

exists a path p = p0; p1; : : : ; pn = q, such that the max-

imal variation of the gray values of the points on the

path is less than or equal to �, and the maximal varia-

tion of the gray values of any two adjacent points along

the path is less than or equal to �. Such a path will

be called an (�; �)-connected path between p and q. A

subset of � is called an (�; �)-connected set if each pair

of points of the subset is (�; �)-connected. The de�ni-

tion of (�; �)-connectedness gives us a convenient tool

to study the variation of gray values in an image. By

varying the parameters � and �, we may investigate

the diverse distribution of gray values. Given a point

p 2 �, any maximal (�; �)-connected set containing p

is called a related (�; �)-connected component (in short,

(�; �)-RCC) of p, and is denoted by C�
p ; the point p is

called the seed point of its (�; �)-RCCs. (By a maximal

(�; �)-connected set, we mean an (�; �)-connected set

S such that there exists no other (�; �)-connected set

which contains S properly, i.e., for any point p0 62 C�

p ,

there is at least one point q 2 C�
p , such that p0, q are

not (�; �)-connected.) If we �x the value of � as the

spectrum of �, then the concept of (�; �)-RCC has sim-

ilarity with the concept of G-neighbors [13]. For a given

image, each (�; �)-RCC obtained by Algorithm 3.1 (see

Section 3) is called an (�; �)-component of the image.

3. AN ALGORITHM TO FIND

(�; �)-COMPONENTS

Algorithm 3.1 Let � be a gray image. The steps of

the algorithm are as follows:

0. input a set �, integers � � 0 and � � 0;

1. bu�er = �; i = 0;

2. while (bu�er 6= empty) do

f

3. select a point p 2 bu�er as the seed point

of the next (�; �)-RCC; i = i+ 1;

4. �nd an (�; �)-RCC C
bu�er
p ; Si = C

bu�er
p ;

5. bu�er = bu�er �C
bu�er
p ;

g

First, we make some general remarks about the al-

gorithm and then in the following subsections we shall

discuss in detail certain steps of the algorithm. Up to

this point, the algorithm does not depend on the grid

system used to represent an image. Also, it does not de-

pend on the manner (among the various possible ways)

in which two points are de�ned as adjacent. Since for

any point p, its (�; �)-RCCs are non-empty, we always

have j C
bu�er
p j � 1, therefore

j bu�er� C
bu�er
p j<j bu�er j.

So, we see that the algorithm will de�nitely termi-

nate after a �nite number of steps. Also the algorithm

gives a partition of �: This is because according to

the algorithm, for some k, 1 � k �j � j, we have

� = S1 [ S2 [ : : :[ Sk, and Si \ Sj = ; if i 6= j. Each

partition Si obtained by using Algorithm 3.1 is called

an (�; �)-connected component of �. For convenience,

we shall refer to an (�; �)-connected component as an

(�; �)-component. Since the variable bu�er in the algo-

rithm is a set of points, it is clear that we could always

�nd a point p in bu�er in Step 3 of the above algorithm

as long as bu�er is not empty. This procedure can be

done in O(j bu�er j) time. During each iteration, the

content of the variable bu�er in Step 4 of the algo-

rithm is a subset of � and the content of bu�er in the

ith iteration is a proper subset of that in the (i� 1)th

iteration. So, an (�; �)-RCC of the point p in the bu�er

is not necessarily an (�; �)-RCC of p in �. (Later in

this section, we shall give an algorithm for �nding an

(�; �)-RCC of a point p in bu�er in O(j bu�er j) time.)

Since j bu�er j� m � n, Steps 0, 1, 3, 4, 5 can be done

in O(m � n) time. From the above discussion, it is

clear that the iteration can be repeated at most m� n

times. Therefore, Algorithm 3.1 has an upper bound

run{time O((m � n)2).

3.1. Strategies for choosing a seed point

Now, we shall discuss more details about Step 3 of Al-

gorithm 3.1. During the iteration, there would be often

more than one point in bu�er. So, a natural question is

which one should we select as the seed point p for the

next (�; �)-RCC? In principle, any one of them could be

selected. There are many possible strategies to select

it. (For example, we may choose p randomly, or as the

point that has the smallest gray value, or the great-

est gray value, or the average gray value, in bu�er.)
382381
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If we have some pre-knowledge of the gray values of

the objects we are interested in, and hope that each

potential object to be partitioned has one component,

then we may make a more speci�c choice for selecting

p. For example, in the image at the left side of the

second row of Figure 1, the objects are darker than

the background, so we may select the darkest point in

bu�er as the seed point p. The image at its right side

shows the corresponding (�; �)-components with � = 46

and � = 10. For comparison, the image below it shows

the (�; �)-components with the same �, � values but

here we select the brightest point in bu�er as the seed

point during each iteration. As we can see, in the �rst

image the chromosomes are represented by the (�; �)-

components very closely, but in the second image the

pixels of each chromosome have been grouped into sev-

eral (�; �)-components. If we decrease the value of �,

then before the pixels of a chromosome been grouped

into an (�; �)-component (see the chromosomes at the

top left and top right of the image at the right side of

the third row of Figure 1) the range of the gray values

of the pixels within another chromosome may already

exceed the value of � (see the chromosomes at the mid-

dle of the right side of the same image). So, if we select

the brightest point as the seed point, it is unlikely to

have the values of � and � such that the chromosomes

could be represented by the (�; �)-components. In a

more general situation, we may use a histogram to �nd

the distribution of the gray values of the objects and the

background. Then, we may choose a point which has a

peak or a valley value accordingly as a seed point. Note

that, for a given image, di�erent strategies for selecting

the seed point may induce di�erent partitions but each

member of the partition will still be an (�; �)-RCC of

the seed point of the member. In this paper, for conve-

nience, we shall refer to the strategy as strategy1 if we

select a seed point p that has the minimal gray value in

bu�er, and as strategy2 if we select p that has the max-

imal gray value. It is clear that we could �nd the point

which has the lowest or highest gray value in bu�er in

O(j bu�er j) time. Many other strategies, such as �nd-

ing the point which has the average or medium gray

value, could also be adopted with similar run-times.

3.2. Strategies for �nding an (�; �)-RCC

Let p be a given seed point of bu�er and C
bu�er
p repre-

sent an (�; �)-RCC of p in bu�er. We may �nd C
bu�er
p

as follows: At the beginning, we set C
bu�er
p as fpg

since p belongs to C
bu�er
p . Then, starting from the

point p, we shall �nd all points q in bu�er such that

q 2 C
bu�er
p by using either the breadth-�rst search or
depth-�rst search algorithms (see e.g., [14, Chap. 23]).

In a breadth-�rst search, we search the neighbors of

only the points that are currently in C
bu�er
p . After

�nding all the new points belonging to C
bu�er
p , we add

them into C
bu�er
p and search the neighbors of the new

points, and continue in this manner till no more points

can be added. In a depth-�rst search, we start from a

point in C
bu�er
p ; once we �nd a neighbor of the point

which belongs to C
bu�er
p , we add the neighbor into

C
bu�er
p , keeping track of the other neighbors of the

point, and then we turn to search the neighbors of the

newly added point. This procedure is repeated till no

more points can be added into C
bu�er
p . Then we se-

lect the last added point which has unchecked neighbor

point, and repeat the searching procedure as above, un-

til all the points in C
bu�er
p have been searched. Using

the following result (for details see [11]), we can decide

whether or not a point q belongs to C
bu�er
p for a spe-

ci�c point p: If S is an (�; �)-connected set of �, and p,

q are two adjacent points of � such that p 2 S, q 62 S,

j �(p) � �(q) j� �, and also any one of the following

conditions be satis�ed: (1) maxS � �(q) � minS ; (2)

�(q) > maxS and �(q) �minS � �; (3) �(q) < minS
and maxS � �(q) � �, then S [ fqg is also an (�; �)-

connected set of �.

We shall only give here an algorithm which uses a

breadth-�rst search for �nding an (�; �)-RCC of a seed

point p. For implementation purposes, we choose a

quadrate grid system to represent an image and use

8-neighbors for considering adjacency of two points (it

is straightforward to modify the algorithm for other

grid systems or other kinds of adjacency). We shall

use two markers for each point q in bu�er. The marker

\checkq" represents whether the eight neighbors of the

point q have been checked or not. The marker \includedq"

represents whether the point q has been included in

C
bu�er
p or not. Initially, C

bu�er
p is empty and both

checkq and includedq are FALSE for each q. The ba-

sic idea of the algorithm is that, �rst, we put p in

C
bu�er
p , change includedp to TRUE; while there is an

unchecked point q (checkq=FALSE) in C
bu�er
p , then

we change checkq to TRUE, and check its eight neigh-

bors (if q is a boundary point, it will have less than eight

neighbors). Among the eight neighbors, we add those

not-yet-included points (their included marker being

FALSE) that belong to the considered (�; �)-RCC into

C
bu�er
p ; repeat checking the points in C

bu�er
p until

there is no unchecked point. For convenience, we rep-

resent the eight neighbors of a point q by q1; q2; : : : ; q8
383382
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starting from the upper-left corner of q in a clock-wise

manner.

Algorithm 3.2 Let bu�er be a connected set of points,

p be a seed point in bu�er, � be a given range-parameter

and � be a given adjacency-parameter. The steps of the

algorithm to �nd an (�; �)-RCC of p are as follows:

0. C
bu�er
p = fg;

1. For all q 2 bu�er, checkq=includedq=FALSE;

2. C
bu�er
p = fpg; includedp=TRUE;
min

C
bu�er
p

= max
C
bu�er
p

= �(p);

3. while (9q 2 C
bu�er
p and checkq==FALSE)

f
4. checkq=TRUE;

5. Put q's neighbors q1; q2; : : : ; q8 in a certain order,

say qi1 ; qi2; : : : ; qi8, according to their gray values;

6. for (j=1; j<8; j++)

if (includedq==FALSE)

if (max
C
bu�er
p

� �(q) � min
C
bu�er
p

or

�(q) > max
C
bu�er
p

and �(q)�min
C
bu�er
p

� �

or

�(q) < min
C
bu�er
p

and max
C
bu�er
p

��(q) � �)

f

C
bu�er
p = C

bu�er
p [ fqijg;

includedqij=TRUE;

if (�(qij ) > max
C
bu�er
p

)

max
C
bu�er
p

= �(qij );

if (�(qij ) < min
C
bu�er
p

)

min
C
bu�er
p

= �(qij );

g
g

Since j C
bu�er
p j�j bu�er j and we change the state

of a checkq in each while loop, the while loop in Step 3

can be repeated at most j bu�er j times. So, we see

that the algorithm will terminate after a �nite num-

ber of steps. In order to check all the neighbors of q

and decide whether they belong to C
bu�er
p , we need to

examine them one by one in a certain order. A seed

point p often has more than one (�; �)-RCC. For a point

q, it is possible that two of its neighbors belong to its

two di�erent (�; �)-RCCs respectively, but not belong

to a same (�; �)-RCC. Di�erent methods used to order

the neighbors of a point q in Step 5 reect the di�erent

strategies for selecting a speci�c (�; �)-RCC of the point

q in bu�er. Thus, di�erent types of order may induce

di�erent (�; �)-RCCs. It would induce a more meaning-
ful result if we make a decision that takes into account

the method of selecting the seed point p. For example,

since we hope that each object in the image would be

partitioned into one (�; �)-RCC; intuitively, if p has the

minimum gray value in bu�er, we order the neighbors

of q by their gray values increasedly. If p has the maxi-

mum gray value in bu�er, then we order the neighbors

of q by their gray values decreasedly, and so on. Since

there are only a constant number of neighbors for any

point q, we can sort them in O(1) time. Steps 0, 2, 4, 5

and 6 can be done in O(1) time and Steps 1 and 3 can

be done in O(j bu�er j) time. Therefore, Algorithm 3.2

has O(j bu�er j) run-time.

4. EXPERIMENTAL RESULTS

We have implemented Algorithm 3.1 by using Algo-

rithm 3.2 in Step 4 of Algorithm 3.1. The experiments

on a variety of images were carried on a SUN 4 work-

station using the standard Khoros image processing en-

vironment (see [15] for an overview of Khoros). In our

implementation, we use a rectangular grid to represent

an image which is an 300 � 300 array and use the 8-

neighborhood of the points to consider the connectiv-

ity. Although for randomly chosen � and �, the (�; �)-

components may not represent the objects in an image,

the experimental results show that we could adjust the

values of � and � such that the (�; �)-components rep-

resent the objects reasonably well in many kinds of im-

ages. Figures 1 and 2 show some experimental results

for di�erent kinds of images. In each output image the

white colored curves correspond to the boundaries of

the (�; �)-components. From the experimental results,

we infer that if we select the strategy and the parame-

ters � and � appropriately, the (�; �)-components of an

imagemay segment the required objects from the back-

ground reasonably well. Of course, the appropriate �, �

values would change with the di�erent kinds of images,

objects and applications.

5. CONCLUSIONS

In this paper, we have discussed an e�ective algorithm

which partitions a gray image such that each member

of the partition is an (�; �)-component of the image. A

practical advantage of the concept of (�; �)-components

of an image is that we may understand the structure

of an entire image through the (�; �)-components, the

inter-relationships of the (�; �)-components, and the re-

lationships of the (�; �)-components with di�erent val-

ues of � and �, rather than that only of the pixels of the

image. Another bene�t is that we may understand the

content of an image by extracting the target objects in
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a certain problem through the (�; �)-components.

Since we do not make any assumptions about the

formation model of the image data, our approach could

be applied to di�erent kinds of images formed by op-

tical or non-optical sensors. It is also not di�cult to

modify the algorithm for images which use di�erent

grid systems or use di�erent kinds of adjacency to con-

sider connectedness. Results of experiments on a vari-

ety of images have been given. Our technique provides

a possible method of transition from low level computer

vision to a higher level vision. Since the latter level

describes also the inter-relationships of the objects in

an image, it helps us to understand the image macro-

scopically in an easier manner than only through the

study of the relationships of the pixels of the image.

To summarize, the concept of the (�; �)-components is

a convenient methodology for helping us to analyze a

gray image e�ectively.
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Figure 1: Some examples of (�; �)-components. Frome

top to bottom and left to right: A binary image; Its

(�; �)-components with � = 1, � = 0. A chromosome

image; Its (�; �)-components by using strategy1 with

� = 46, � = 10; Its (�; �)-components by using strategy2
with � = 46, � = 10; Its (�; �)-components by using

strategy2 with � = 30, � = 20. An original image;

Its (�; �)-components by using strategy1 with � = 80,

� = 80.

Figure 2: Frome top to bottom and left to right: A

X-ray image; Its (�; �)-components by using strategy2
with � = 60, � = 5. A magnetic resonance image;

Its (�; �)-components by using strategy2 with � = 50,

� = 20. Another magnetic resonance image; Its (�; �)-

components by using strategy1 with � = 50, � = 20. A

range image; Its (�; �)-components by using strategy1
with � = 30, � = 15.
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